fNIRS offers a practical, portable, and relatively inexpensive alternative to assess correlates of brain oxygenation. Moreover, it allows to coregister other neurophysiological and behavioral data in a “near natural” environment. Because of this, the technique is promising for the field of clinical neurology, and indeed fNIRS has been used to detect changes in cerebral hemodynamics after severe TBI.
I. Helmich, A. Berger, and H. Lausberg, “Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms,” Med Sci Sports Exerc, Jul. 2016.
I. Helmich, R. S. Saluja, H. Lausberg, M. Kempe, P. Furley, A. Berger, J.-K. Chen, and A. Ptito, “Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation,” J Neuropsychiatry Clin Neurosci, vol. 27, no. 4, pp. 287–298, 2015.
General information and Physical Principles of NIRS Operation:
NIRS BrainTV - Videos Presentations
NIRS Knowledge Base
NIRS Blogs
NIRS Publications
Auditory System | BCI NIRS | Brain Perfusion | Cognitive States | Neuroeconomics | Connectivity | Technological Advances
Pain Research | Emotions | Infant Monitoring | Motor Execution | Somatosensory | Social Interaction | Stroke Rehabilitation
Naturalistic Environments | Traumatic Brain Injury TBI NIRS | Visual Stimulation | Complementary and Integrative Medicine
Multi-modal EEG fNIRS | Developmental Changes | Speech and Language | Event-Related Optical Signal | Clinical Neurology
The content published here is the exclusive responsibility of the authors.