NIRS Publication Event-Related Optical Signal ERP NIRx

Friday, 19 de June de 2020
NIRS Publication Event-Related Optical Signal ERP NIRx

Event-Related Optical Signal

fNIRS is potentially the only imaging method that may be capable to measure both hemodynamics and neuronal activity. The Event-Related Optical Signal, caused by changes in light scattering from activated neurons, is observable when employing high frequency sampling with fNIRS.

X.-S. Hu, K.-S. Hong, and S. S. Ge, “Recognition of stimulus-evoked neuronal optical response by identifying chaos levels of near-infrared spectroscopy time series,” Neurosci. Lett., vol. 504, no. 2, pp. 115–120, Oct. 2011.

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res., vol. 1236, pp. 145–158, Oct. 2008.

For an informative discussion on the various strategies of optical imaging techniques, please visit:;

General information and Physical Principles of NIRS Operation:

NIRS BrainTV - Videos Presentations

NIRS Knowledge Base

NIRS Blogs

NIRS Publications
Auditory System
  |  BCI NIRS  |  Brain Perfusion  |  Cognitive States  |  Neuroeconomics  |  Connectivity  |   Technological Advances

Pain Research  |  Emotions  |  Infant Monitoring  |  Motor Execution  | Somatosensory  |  Social Interaction  |  Stroke Rehabilitation
Naturalistic Environments  |  Traumatic Brain Injury TBI NIRS  |  Visual Stimulation  |  Complementary and Integrative Medicine
Multi-modal EEG fNIRS  |  Developmental Changes  |  Speech and Language  |  Event-Related Optical Signal  |  Clinical Neurology


The content published here is the exclusive responsibility of the authors.


Jackson Cionek

#eegerpbci #nirslatam #mobileeeg #eegnirseyetracking #eegerpbci #nirslatam #mobileeeg #eegnirseyetracking