EEG MicroStates NIRS fNIRS EEG ERP BCI Neuroscience 2024

Tuesday, 09 de July de 2024

EEG MicroStates NIRS fNIRS EEG ERP BCI Neuroscience 2024

NIRS fNIRS Amplifier EEG ERP Amplifier Neuroscience 2023
EEG MicroStates NIRS fNIRS Amplifier EEG ERP Amplifier Neuroscience

Detection of Emotional Sensitivity Using fNIRS Based Dynamic Functional Connectivity

Pode-se usar o EEG para analisar MicroStates que representam configurações breves e recorrentes da atividade elétrica cerebral, enquanto o NIRS pode monitorar a conectividade funcional e a oxigenação cerebral. Adicionalmente, a medição de íons de cálcio intracelulares poderia fornecer insights sobre a atividade neuronal em resposta a estímulos emocionais.

Possíveis experimentos:

Integração Multimodal: Comparar como MicroStates do EEG e estados de conectividade do NIRS co-ocorrem durante a exposição a estímulos emocionais.

Correlação com Íons de Cálcio: Investigar a relação entre alterações nos níveis de íons de cálcio e as mudanças nos MicroStates do EEG/NIRS durante tarefas que envolvem tomada de decisão emocional.

Modelagem Preditiva: Desenvolver modelos que integrem dados de EEG, NIRS, e cálcio para prever a sensibilidade emocional e a resiliência em estudantes de enfermagem e profissionais já registrados.

Essas abordagens podem abrir caminhos para intervenções mais personalizadas e eficazes no treinamento de habilidades emocionais em contextos profissionais.


Papel dos Íons Cálcio

Os íons cálcio desempenham um papel crucial na transmissão de sinais dentro e entre os neurônios. Alterações nos níveis de cálcio intracelular podem influenciar diretamente a excitabilidade neuronal, a liberação de neurotransmissores e a atividade sináptica. Os Microestados de EEG podem detectar essas alterações porque as flutuações nos níveis de cálcio afetam a polarização das membranas neuronais, o que, por sua vez, influencia o campo elétrico medido pelo EEG MicroStates.

Uma possível relação do EEG MicroStates e íons Calcio:

Para entender a relação entre as mudanças nas sequências de microestados do EEG e as dinâmicas dos íons de cálcio, algumas publicações importantes abordam este tema:

1. Michel e Koenig (2018) fornecem uma revisão abrangente sobre como os microestados do EEG podem ser usados para estudar a dinâmica temporal das redes neurais em todo o cérebro. Eles discutem como esses microestados representam padrões temporais estáveis de atividade elétrica que podem estar relacionados às flutuações de cálcio intracelular.

2. Rieger et al. (2016) realizaram uma meta-análise de 15 anos de pesquisa sobre microestados do EEG em esquizofrenia, explorando como esses padrões de atividade cerebral podem estar relacionados a disfunções neuronais, possivelmente ligadas à regulação de íons de cálcio.

3. Chu et al. (2020) Investigaram a análise de microestados do EEG em pacientes com Parkinson sem medicação, identificando correlações entre a dinâmica dos microestados e mudanças neurofisiológicas, incluindo a atividade de íons de cálcio.

4. Coquelet et al. (2022) usaram modelos de estados ocultos para sondar a atividade cerebral em diferentes escalas temporais, o que pode incluir a dinâmica dos íons de cálcio. Este estudo ajuda a entender como a atividade de microestados do EEG se alinha com as dinâmicas intracelulares.

Essas publicações destacam a importância de entender como os microestados do EEG podem refletir as mudanças na atividade neuronal modulada pelos íons de cálcio, oferecendo insights valiosos para a neurociência

Ativação Neuronal: Quando neurônios em uma área específica do cérebro são ativados, seja por pensamentos, sensações, ou movimentos, eles aumentam o consumo de oxigênio e glicose para manter sua atividade.

Sinalização Química e Celular: A atividade neuronal elevada leva à liberação de vários metabólitos, como dióxido de carbono, íons de hidrogênio, adenosina, e óxido nítrico. Além disso, neurônios e células gliais (como astrócitos) liberam neurotransmissores e outros mediadores que sinalizam a necessidade de mais sangue.

Resposta Vascular: Esses sinais resultam em vasodilatação, ou seja, o alargamento dos vasos sanguíneos locais. A vasodilatação aumenta o fluxo sanguíneo para a região ativa, proporcionando mais oxigênio e glicose. Este aumento do fluxo sanguíneo é conhecido como hiperemia funcional.


Proposta Jacksoniana para ser pesquisada

Título: Avaliação Integrada das Funções Cerebrais Através de EEG Microstates, EEG ERP e fNIRS: Uma Abordagem Multimodal para o Estudo do Consumo Energético e Conectividade Neuronal

Resumo

Este estudo avança a utilização combinada de EEG Microstates, Event-Related Potentials (ERP) do EEG, e espectroscopia funcional por infravermelho próximo (fNIRS) para investigar a atividade cerebral. A pesquisa foca na capacidade dos Microstates do EEG de detectar zonas de alta demanda energética, desencadeando mudanças adaptativas no conectoma cerebral, uma resposta necessária de um sistema tão complexo como o cérebro para gerir eficientemente suas funções.

Introdução

A atenção direcionada e o foco em tarefas específicas alteram o consumo energético em áreas particulares do cérebro. Esta demanda energética é captada por Microstates do EEG, que indicam alterações no campo elétrico devido à atividade neuronal e glial. Este estudo propõe que, após a detecção dessa atividade, o cérebro ajusta o espectro de variação de seu conectoma para atender a essas exigências específicas, exemplificando a natureza adaptativa e dinâmica do sistema cerebral.

Metodologia

Participantes engajados em tarefas que requerem concentração intensa serão monitorados utilizando EEG, fNIRS, e tecnologia de ERP. Será dada atenção especial às correlações entre os microestados detectados e mudanças subsequentes no conectoma cerebral, analisadas através de técnicas avançadas de neuroimagem que possam mapear estas adaptações.

Discussão

A habilidade do cérebro de reorganizar seu conectoma em resposta a demandas cognitivas específicas é fundamental para sua eficiência e adaptabilidade. Os Microstates do EEG são essenciais para identificar rapidamente as áreas do cérebro que requerem recursos adicionais, desencadeando um processo de reconfiguração do conectoma que otimiza tanto a alocação de recursos quanto a execução de tarefas. Esta dinâmica é crucial para entender como o cérebro mantém sua funcionalidade sob diversas condições, maximizando o consumo energético sem comprometer a performance.

Conclusão

A integração de EEG Microstates, ERP, e fNIRS proporciona um método poderoso para explorar como o cérebro como um sistema complexo responde a estímulos específicos modificando seu conectoma. Este estudo não apenas realça a capacidade do cérebro de adaptar sua estrutura e função em resposta a demandas externas, mas também sublinha a importância de abordagens multimodais para obter uma compreensão mais completa das operações cerebrais. Esses insights têm implicações significativas para o desenvolvimento de intervenções clínicas mais eficazes e para a melhoria da cognição humana em ambientes naturais e desafiadores.



NIRS-EEG  Multimodal EEG-NIRS Mobile

NIRS-EEG  Multimodal EEG-NIRS Mobile

NIRS-EEG  Multimodal EEG-NIRS Mobile

EEG-NIRS High signal quality

EEG-NIRS High signal quality

EEG-NIRS High signal quality

NIRS Modularity and Scalability

NIRS Modularity and Scalability

NIRS Modularity and Scalability

NIRS with Short distance channels

NIRS with Short distance channels

NIRS with Short distance channels

fNIRS optimal user experience

fNIRS optimal user experience

fNIRS optimal user experience

NIRS-fNIRS Mobile

NIRS-fNIRS Mobile

NIRS-fNIRS Mobile

NIRS-fNIRS extensive versatility

NIRS-fNIRS extensive versatility

NIRS-fNIRS extensive versatility

NIRS-fNIRS for future research needs

NIRS-fNIRS for future research needs

NIRS-fNIRS for future research needs

NIRS EEG extensive versatility

NIRS EEG extensive versatility

NIRS EEG extensive versatility

Mobile NIRS-EEG wearable

Mobile NIRS-EEG wearable

Mobile NIRS-EEG wearable

NIRS-fNIRS Modularity in divisions of 8 sources 8 detectors

NIRS-fNIRS Modularity in divisions of 8 sources 8 detectors

NIRS-fNIRS Modularity in divisions of 8 sources 8 detectors

Neuroscience 2022 Brain Support Latam

Neuroscience 2024 Brain Support Latam

Neuroscience 2024 Brain Support Latam

FALAN Federation of Latin American and Caribbean Neuroscience Societies

FALAN Federation of Latin American and Caribbean Neuroscience Societies

FALAN Federation of Latin American and Caribbean Neuroscience Societies

LATBrain A brain with science and Latin American consciousness

LATBrain A brain with science and Latin American consciousness

LATBrain A brain with science and Latin American consciousness

BrainSupport Solution for Neuroscience Researchers

BrainSupport Solution for Neuroscience Researchers

BrainSupport Solution for Neuroscience Researchers

Soluciones tecnológicas BrainSupport para la investigación neurocientífica en Sudamérica, Latinoamérica.

BrainSupport Solution for Neuroscience Researchers – Neuroscience to improve Latin American Identity. Scientific questions and experimental designs for the development of culture, behavior, perception and Latin American consciousness.

Argentina | Bolívia | Brasil | Chile | Colômbia | Costa Rica | Cuba | Equador | El Salvador | Guatemala | Haiti | Honduras | México | Nicarágua | Panamá | Paraguai | Peru | República | Dominicana | Uruguai | Venezuela |


*****
 

Neuroscience EEG Amplifier

EEG amplifiers Highlight  - The main features of Brain Products EEG Amplifier 08 16 20 32 64 96 128 160 256 channels:

The work of an EEG amplifier is quite simple to understand and can be summarized in just a few steps:

  • First, the system considers the incoming signal as the difference in electrical potential (µV) between two electrodes (i.e., differential recording principle), whereby the ground electrode (GND) is normally used as primary reference. However, to avoid the influence of non-physiological electrical noise coming from the internal ground circuitry of the amplifier, another electrode is usually chosen as baseline for all channels (i.e., the online reference channel or REF). The actual incoming signal is therefore the difference in electrical potential between each EEG channel and the online REF.

  • The signal then passes through one if not two hardware filters within the amplifier to avoid potential conversion issues. The measured signal may in fact contain very high frequencies that the Analog-to-Digital Converter (ADC) is not able to process, thus it is important to exclude them beforehand with a low pass (or high cutoff) filter. Additionally, some amplifiers may have a second high pass (or low cutoff) filter to remove very low frequencies; if not, all frequencies down to 0 Hz (DC) are passed on to the ADC.

  • The filtered signal is then amplified and converted from analog (i.e., continuous in time) to digital (i.e., discrete in time) by the ADC.

  • The digital signal is then transmitted to the recording computer for further processing and is eventually saved.

EEG Amplifiers Comparison

Neuroscience EEG Amplifier LiveAmp actiCHamp PLUS

Neuroscience EEG Amplifier LiveAmp actiCHamp PLUS

EEG Amplifier LiveAmp and actiCHamp PLUS

Neuroscience EEG Amplifier actiCHamp PLUS

Neuroscience EEG Amplifier actiCHamp PLUS

EEG Amplifier actiCHamp PLUS

Neuroscience EEG Amplifier actiCHamp PLUS Synbox

Neuroscience EEG Amplifier actiCHamp PLUS Synbox

EEG Amplifier actiCHamp PLUS Synbox

Neuroscience EEG Amplifier ABR Auditory Brainstem Responses

Neuroscience EEG Amplifier ABR Auditory Brainstem Responses

EEG Amplifier ABR Auditory Brainstem Responses

Neuroscience EEG Amplifier LiveAmp

Neuroscience EEG Amplifier LiveAmp

Wireless EEG Amplifier LiveAmp

Neuroscience EEG Amplifier LiveAmp Sensor Trigger Extension

Neuroscience EEG Amplifier LiveAmp Sensor Trigger Extension

Wireless EEG Amplifier LiveAmp Sensor Trigger Extension

Neuroscience EEG Amplifier BrainAmp for MR

Neuroscience EEG Amplifier BrainAmp for MR

EEG Amplifier 32, 64, 96 and 128 channels BrainAmp for MRI

Neuroscience EEG Amplifier BrainAmp EXG Sensor for MRI

Neuroscience EEG Amplifier BrainAmp EXG Sensor for MRI

Sensor for MRI BrainAmp EXG

Neuroscience EEG Amplifier BrainAmpDC Hyperscanner

Neuroscience EEG Amplifier BrainAmpDC Hyperscanner

Neuroscience EEG Amplifier for Hyperscanner

Hyperscanning Setup with 10 EEG

Hyperscanning Setup with 10 EEG

Wireless EEG Amplifier BrainAmp EEG MOVE Wireless

Neuroscience EEG Amplifier CGX Quick-20r

Neuroscience EEG Amplifier CGX Quick-20r

EEG Amplifier CGX Quick-20r

Neuroscience EEG Amplifier CGX Quick-32r

Neuroscience EEG Amplifier CGX Quick-32r

EEG Amplifier CGX Quick-32r

Neuroscience BrainLatam

Neuroscience BrainLatam

EEG Amplifier

Neuroscience 2022 Sempre Melhorando

Neuroscience 2024 Sempre Melhorando

Neuroscience 2024 Sempre Melhorando

Neuroscience 2022 NIRS EEG

Neuroscience 2024 NIRS EEG

 

BrainSupport Solution for Neuroscience Researchers – Neuroscience to improve Latin American Identity. Scientific questions and experimental designs for the development of culture, behavior, perception and Latin American consciousness.

Neuroscience EEG Applications

If you plan to run regular cognitive neuroscience studies, then our recommendation for you is the actiCHamp Plus for its advanced technical features, scalability of channel count, and versatility in terms of compatible electrode technologies.

However, there may be applications for which other solutions could be a better fit or are even required, for example:

Simultaneous EEG-fMRI

Emblem EEG-fMRI

For this advanced application, the BrainAmp MR or BrainAmp MR plus are the necessary solutions for you. Both are MR Conditional (i.e., usable inside the scanner under specific recording conditions) but they will also work perfectly outside of the scanner for more regular investigations. In particular, the BrainAmp MR plus could be the perfect choice if EEG-fMRI recordings and lab-based measurements are planned, because it allows you to change resolution, measurement range and cut off frequencies based on your recording environment.

Simultaneous EEG-MEG

Emblem EEG-MEG

Compatibility with Magnetoencephalography (MEG) depends on the amplifiers’ electromagnetic emissions, which are linked to the number of ADC card(s) of the system. The BrainAmp family amplifiers are equipped with only one ADC card and therefore almost silent in terms of electromagnetic emissions. In particular, the BrainAmp MR and BrainAmp MR plus are the recommended solutions for optimal compatibility with the MEG environment.

Simultaneous EEG-fNIRS

Emblem EEG-fNIRSFor such simultaneous recordings, we recommend the actiCHamp Plus for lab-based measurements, or the LiveAmp for mobile investigations.

Simultaneous EEG and Eye Tracking

Here our recommendation is the actiCHamp Plus for lab-based measurements or the LiveAmp for mobile investigations.

Simultaneous EEG-TMS

Emblem EEG-Brain Stimulation (TMS)

The BrainAmp DC and BrainAmp MR plus have been widely used for recording EEG whilst simultaneously applying Transcranial Magnetic Stimulation (TMS) thanks to their switchable internal features. Similarly, the BrainCap TMS is also highly appreciated for this application. Nevertheless, the actiCHamp Plus could now be a valid alternative for you thanks to its high sampling rates, the flexibility to combine it with active or passive gel-based electrode technologies, and the possibility of expanding your setup for real-time brain-state dependent stimulation.

Closed-loop and real-time applications

If you are interested in real-time brain-state dependent investigations (e.g., stimulation, neurofeedback, etc.) then the actiCHamp Plus together with our TurboLink is the right choice for you. All our amplifiers can in fact stream data from BrainVision Recorder to any third-party application either via RDA or LSL, but without the latency and accuracy required for advanced closed-loop investigations. The TurboLink accesses the data recorded by actiCHamp family amplifiers and transmits it reliably via Ethernet in less than 1.5 ms to any compatible online signal processor (e.g., the bossdevice RESEARCH by sync2brain).

Mobile experiments (MoBI and Sport Science)

Emblem mobile EEG

If you would like to investigate neural processes both inside and outside of the lab, maybe even during motion, then the LiveAmp is what you are looking for. Thanks to its wireless communication protocol, it gives freedom of movement whilst being able to stream the data to the recording computer. The internal memory card is an additional advantage: saving the data locally ensures no data point is lost due to unexpected communication issues. The combination of the LiveAmp with our actiCAP slim electrodes ensures high quality data even under strenuous conditions such as running or cycling.

If instead you are looking for high-coverage solutions, then the CGX Mobile systems are the right choice for you, available with 72 or 128 channels. Alternatively, if your measurements include minor movements (Marini et al., 2019), you can also consider the CGX Quick systems.

BCI and Neurofeedback

Emblem BCI

If you work in these fields and your application is less time-critical, you most likely look for a solution that is easy to handle and minimalistic, with the option to stream data to other online processing software. Even though all our amplifiers will work very nicely for you, the LiveAmp could be a very good candidate especially if coupled with electrode technologies that offer short preparation times (for example, our sponge-based R-Net caps or our active-dry actiCAP Xpress Twist). Accordingly, the CGX Quick systems could also be a good option for you thanks to their innovative design based on active dry electrodes. Both solutions will allow you to record data from many participants within a short period of time even in more realistic environment and situations.

Sleep

Emblem Sleep EEGWhen measuring brain activity during sleep, you most likely aim to keep your setup as comfortable for your participants as possible. The LiveAmp is therefore a great option: being very small and wearable, it will ensure a more natural sleep, and by connecting it to an external power bank you will be able to reach even longer recording times.

Alternatively, if more than 64 channels or higher sampling rates are required, the actiCHamp Plus will give you more flexibility and technical power whilst keeping the setup as minimal as possible.

Hyperscanning

Emblem Hyperscanning

If you would like to record the neural activity of more than one participant simultaneously, you may choose from various options. The BrainAmp family will offer you the cleanest stationary setup:  each participant is connected to dedicated amplifier unit(s) that transmit(s) to the BUA, which synchronizes the data and sends them to the recording computer with no need to further work on data re-alignment offline.

The CGX systems however are ideal for wireless hyperscanning: each amplifier will stream data to the dedicated recording computer, and synchronization can be obtained by sending the same triggers to each unit via the Wireless StimTrigger.

Alternatively, you may take advantage of the Mirror Mode of the trigger output ports of both actiCHamp Plus (stationary) and LiveAmp (mobile) to forward triggers across separate amplifier units, one for each participant. Furthermore, all our amplifiers allow for remote data access and can stream data to third-party applications like LSL, which allows the recording and synchronization of data streams from different amplifiers (read our article on this topic to learn how).

 

*****
#Neuroscience
#sfn
#OHBM
#Neurociencias
#LatBrain
#FALAN
#Sbnec
#Fesbe


*****
#NIRSfNIRS
#fNIRS
#NIRS
#NIRSBCI
#NIRSEEG
#eegfmri

*****
#eegmicrostates
#nirseeg
#eegerpbci
#nirsfnirs
#eegerp
#eegbci

*****
#EEGERPBCI
#EEG
#EEGERP
#eegbci


The content published here is the exclusive responsibility of the authors.

Autor:

Jackson Cionek